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Motivating Example

• Agent under investigation:

⇒ Recombinant human keratinocyte growth factor
(KGF)

• Patient group:

⇒ Allogeneic bone marrow transplant (BMT) recipients

∗ Experience acute graft-versus-host disease
(aGVHD)

∗ Occurs within 100 days of BMT

∗ Includes severe GI distress, i.e. vomiting,
diarrhea, bleeding
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Motivating Example

• Potential treatment:

⇒ Reduction of chemotherapy- and radiation-induced
injury to the mucosal lining of the lower
gastro-intestinal (GI) tract

• Potential toxicities:

⇒ mild to moderate skin-related events such as rash,
reddening, and edema

⇒ reversible increases in amylase and lipase indicative
of pancreas dysfunction
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Motivating Example

• Prior Phase I trials

⇒ 60 mg/kg/day of IV KGF associated with mimimal
toxicity in BMT recipients

⇒ administered on days -2, -1, 0, 5, 6, 7 post-BMT

∗ 3-days-on/4-days-off schedule for two weeks

• Subjects followed additional two weeks after last
administration of KGF.

⇒ Implicitly assumes toxicity risk for single
administration ends after 18 days.
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Motivating Example
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Question:

⇒ How often can we repeat this two-week course and
keep cumulative probability of toxicity close to a
pre-determined threshold?
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Study Design Considerations

• Sequentially enroll subjects as they are eligible

• Each two weeks of administrations = one course

• Number of courses (schedule) assigned to subject i
determined from information collected on subjects
1, 2, . . . , i− 1

• Comparing schedules:

– Use data from enrolled subjects to compute
posterior probabilities of toxicity

– Schedule best satisfying pre-defined criteria is MTS
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Study Design Considerations

• Naive approach - use standard Phase I trial design:

– Treat each two-week course as a ”dose”

Braun, Ferrara, Levine (2003) CCT

– Use TiTE-CRM (Cheung & Chappell, 2000,
Biometrics) to weight information of subjects who
have not completed their ”dose”

• Better approach

– Directly model hazard of toxicity for every single
administration
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Preliminary Notation

• Global study values:

t∗ = any given time from start of the trial when
evaluation is made

n∗ = number of patients enrolled up to t∗

τ = duration of observation for each subject

pτ = acceptable level of cumulative toxicity by τ

• Subject-specific values (i = 1, · · · , n∗):

ei = study time when subject i enters the trial

si = {si,1, . . . . . . , si,mi} denotes successive patient
times at which the ith subject receives the agent,
where si,1 coincides with study entry.
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Preliminary Notation

Reconciling study time and subject time:

• Subject i receives the agent at study times

0 < ei + si,1 < ei + si,2 < · · · < ei + si,mi

Notation is very general:

• Agent may be administered whenever and as
frequently as desired to each patient

• Allows for an arbitrary number of different
treatment sequences to be studied in the trial

• A subject’s actual administration times can deviate
from scheduled times
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Preliminary Notation

We restrict focus to k treatment sequences s(1), · · · , s(k):

• s(j) = (s1, s2, . . . , sm(j))

• jth sequence has a total of m(j) administrations at
ith patient times si,1, . . . , si,m(j)

• s(j) ⊂ s(j+1) for each j = 1, . . . , k − 1

• m(1) < m(2) · · · < m(k)

In the KGF trial:

• s(1) = (0, 1, 2, 7, 8, 9)

• s(2) = (0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, 23)
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Preliminary Notation

• Yi = actual, possibly yet unobserved, amount of time
after study entry at which patient i experiences toxicity

• At interim study time t∗ :

(Y o
i , δi) =

�
(Yi, 1) if ei + Yi ≤ t∗

(t∗ − ei, 0) if ei + Yi > t∗,

• mi = index of the last administration received by patient
i at t∗

mi ≤ m(j) either due to

(a) administrative censoring

(b) patient i had toxicity at study time ei + si,mi

(further administration is stopped)
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Modelling Single Administration Hazard

• Assume risk of toxicity increases after administration of
KGF, reaches a peak, then decays to zero

• Model as a piecewise linear function:
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• Hazard is identical for each administration
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Modelling Single Administration Hazard

• Mathematically:

h(u; θ) =

8<
:

θ2
θ1

u ; 0 ≤ u ≤ θ1

θ2
θ3−θ1

(θ3 − u) ; θ1 < u ≤ θ3

θ1 represents the point in time when h(u; θ) reaches
maximum

θ2 is the hazard at s = θ1

θ3 represents the point at which hazard vanishes
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Total Hazard Function

• Using the single administration hazard function h(u; θ),
we define the total hazard function for each subject:

λ(t∗ | θ, s, Y o) =

mX
`=1

h(Y o − s` | θ)
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Cumulative Hazard Function

• Subject’s cumulative hazard function is

Λ(t∗ | θ, s, Y o) =

Z Y o

0

mX
`=1

h(u− s` | θ) du
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Functions of CHF

• Cumulative distribution function (CDF) of Y is

Pr(Y ≤ t∗ | θ, s, Y o) = F (t∗ | θ, s, Y o)

= 1− exp{−Λ(t∗ | θ, s, Y o)}

• Probability density function (PDF) is

f(t∗ | θ, s, Y o) = λ(t∗ | θ, s, Y o) exp{−Λ(t∗ | θ, s, Y o)}
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Likelihood for θ

• At interim time t∗, we have enrolled n∗ subjects

• For subject i = 1, 2, . . . , n∗, we have information

Di = (si, Y
0

i , δi)

• Total information is D∗ = (t∗,D1,D2, . . . ,Dn∗)

• Likelihood for θ at t∗ is

L(D∗ | θ) =

n∗Y
i=1

{f(t∗ | θ, si, Y
o

i )}δi

x

n∗Y
i=1

{1− F (t∗ | θ, si, Y
o

i )}1−δi
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Posterior Distribution for θ

• Denoting the prior by p(θ), the posterior of θ is

g(θ | D∗) =
L(D∗ | θ)p(θ)R
L(D∗ | θ)p(θ)dθ

.

• Above integral cannot be obtained analytically under our
assumed model

– Compute posterior quantities via Markov chain
Monte Carlo (MCMC) methods
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Eliciting Prior Distribution for θ

• We denote the prior distribution of θ as

p(θ) = p3(θ3) p1(θ1|θ3) p2(θ2)

• For p3(θ3), the investigator must identify:

(a) [T`, Tu], plausible range for θ3

(b) µθ3 , the expected value of θ3

• For p1(θ1|θ3), the investigator must identify a 95%
credible interval for θ1, denoted m± d

• For p2(θ2), the investigator must identify the a priori
optimal schedule, denoted s∗
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Eliciting Prior Distribution for θ3

• We assume θ3 has a generalized beta distribution

p3(u) =
(u− T`)

a3−1(Tu − u)b3−1

B(a3, b3)(Tu − T`)a3+b3−1
, T` ≤ u ≤ Tu,

where

B(a3, b3) =

Z 1

0

xa3−1(1− x)b3−1dx

a3 = k3(µθ3 − T`)

b3 = k3(Tu − µθ3)

• Tuning constant k3 modulates variance of p3(u), which
decreases as k3 increases
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Eliciting Prior Distribution for θ1

• We also assume θ1, conditional upon θ3, follows a
generalized beta distribution

p1(u|θ3) =
ua1−1(θ3 − u)b1−1

θa1+b1−1
3 B(a1, b1)

, 0 ≤ u ≤ θ3

• From the 95% credible interval, m± d, we have:

a1 =
m

θ3

�
4m(θ3 −m)

d2
− 1

�

b1 =
θ3 −m

θ3

�
4m(θ3 −m)

d2
− 1

�
,

assuming approximate symmetry of p1(θ1|θ3) about m
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Eliciting Prior Distribution for θ2

• Investigator believes schedule s∗ is MTS

⇒ Schedule s∗ has cumulative probability of toxicity by
τ closest to pτ

• Determine θ∗2 so that

E{F (τ | θ∗2 , θ1, θ
∗
3 , s∗, 1)} = pτ ,

where θ∗3 is an assumed value for θ3.

• Example:

⇒ In the KGF trial, investigators believed that schedule
2 (4 weeks) was optimal assuming θ∗3 = 18

⇒ Each administration has a cumulative hazard of 9θ∗2

⇒ Entire schedule has a cumulative hazard of 108θ∗2

⇒ θ∗2 = −log(1− pτ )/108 −−− > µθ2
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Eliciting Prior Distribution for θ2

• θ2 describes the height of the single-administration hazard

⇒ θ2 is quantitatively different than θ1 and θ3

⇒ Generalized beta distribution inappropriate choice
for p2(u)

• We assume θ2 has a prior Gamma distribution

p2(u) = ba2
2 ua2−1exp{−b2u}/Γ(a2), u ≥ 0,

where a2 = k2, b2 = k2/µθ2
, and Γ(z) =

R∞
0

xz−1e−xdx

• Tuning constant k2 modulates the variance of p2(u),
which decreases as k2 increases
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Fine-Tuning Prior Distribution for θ

• Variances of p3(θ3), p1(θ1|θ3), and p2(θ2) heavily
influence the ability of the data to influence p(θ)

• Exhaustive sensitivity analysis of (d, k2, k3) is necessary
before implementing the design

– Simulate toxicity times for a 3-5 subjects

– Apply design using various values of d, k2, k3

– Compare the prior means for θ to their respective
posterior values
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Visualizing Prior for F (τ | θ, s(j), 1)

• From p(θ), we have implied a specific prior distribution for
the cumulative probability of toxicity for each schedule

• To visualize the prior distribution for F (τ | θ, s(j), 1) for
each schedule j:

– Draw B samples from the prior distribution of θ

– Compute B prior estimates of F (τ | θ, s(j), 1) for
each schedule j

– Plot histograms to determine if there is any undue
prior influence on those estimates, i.e, placing too
much mass at 0 or 1
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Visualizing Prior for F (τ | θ, s(j), 1)

• Example:

– θ3 ranges over [4, 50] days, with a mean of 18 days

– θ1 occurs 2± 2 days after administration

– θ2 has mean 0.0021 if pτ = 0.20, Schedule 2 is the
MTS and θ3 = 18

– k2 = k3 = 1

• Mean cumulative probability of toxicity for Schedule 2 is
closest to 0.20

• Variation of F (τ | θ, s(j), 1) increases with j due the
cumulative nature of the schedules
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Visualizing Prior for F (τ | θ, s(j), 1)
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Trial Conduct Issues

• N = maximum number of patients to be enrolled in the
trial

• First patient is assigned the shortest sequence, s(1)

• Only incremental schedule escalation is permitted

• At least M subjects must have received schedules
s(1), ..., s(j−1) before schedule s(j) is assigned

• Schedule de-escalation is permitted without any constraint
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Determining Schedule Assignments

• Given pτ , we will consider two alternative criteria for
choosing each subject’s sequence

• Criterion 1: At time t∗, for each j = 1, ..., k, compute

F ∗j (τ) = E{F (τ | θ, s(j), 1) | D∗}

• The best sequence is defined as that having F ∗j (τ) closest
to pτ , that is, minimizing |F ∗j (τ)− pτ |
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Determining Schedule Assignments

• Criterion 2: At time t∗, for each j = 1, ..., k, compute

φj(τ) = Pr{F (τ | θ, s(j), 1) > pτ | D∗}

• Given a fixed upper limit, p̄, the best sequence is defined
as the longest sequence for which φj(τ) < p̄, that is, for
which the risk of toxicity is acceptable

• Under either Criterion 1 or 2:

Best sequence is assigned to next patient

MTS is defined as the best sequence using
information from all N subjects at the end of the
trial
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Assessing Performance via Simulation

• k = 6 schedules of KGF are investigated: 2, 4, 6, 8, 10 or
12 weeks

• Six scenarios studied: Schedule s(j) optimal under the jth
scenario

– θ1 = 2 days; θ3 = 18 days

– 1000θ2 ∈ [4.13, 2.07, 1.38, 1.03, 0.83, 0.69]

• N = 30

• τ = 100 days

• pτ = 0.20
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Assessing Performance via Simulation

• Prior distributions:

⇒ θ3 has mean of 18 days; range of [4, 100] days

⇒ θ1 between 0-4 days (2± 2 days)

⇒ Schedule 6 is MTS

θ2 has a prior mean 0.00069

⇒ k3 = 0.1; k2 = 0.2

• Subject inter-arrival times ∼ U [12, 16] days

• Posteriors based upon 2000 samples; burn-in of 500
samples

• M = 1000 simulations
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Identifying the MTS: θ3 = 18
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Identifying the MTS: θ3 = 18
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Identifying the MTS: θ3 = 50
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Identifying the MTS: θ3 = 50
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Concluding Remarks

• Overall determination of MTS relatively insensitive to
p1(θ1):

– θ1 influences the time at which each patient
experiences toxicity

– Has more influence on schedule assignments during
the study

• Strong homogeneity assumption:

– Patients who receive the shortest sequence s(1)

provide information about the toxicity of schedules
s(j), j ≥ 1

• Extensions to Phase II & III studies of cumulative dosing

– Adjusting for between-patient variability
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